磷酸铁锂的生产工艺与技术路线浅析
转载自锂电派
锂离子电池作为一种高性能的二次绿色电池,具有高电压、高能量密度(包括体积能量、质量比能量)、低的自放电率、宽的使用温度范围、长的循环寿命、环保、无记忆效应以及可以大电流充放电等优点;锂离子电池性能的改善,很大程度上决定于电极材料性能的改善,尤其是正极材料。目前研究最广泛的正极材料有LiCoO2、LiNiO2以及LiMn2O4等,但由于钴有毒且资源有限,镍酸锂制备困难,锰酸锂的循环性能和高温性能差等因素,制约了它们的应用和发展;因此开发新型高能廉价的正极材料对锂离子电池的发展至关重要。
三、磷酸铁锂的制备方法及研究
LiFePO4正极材料的性能在一定程度上取决于材料的形态、颗粒的尺寸以及原子排列,因此制备方法尤为重要。目前主要有固相法和液相法,其中固相法包括高温固相反应法、碳热还原法、微波合成法和脉冲激光沉积法;液相法包括溶胶·凝胶法、水热合成法、沉淀法以及溶剂热合成法等。
1、高温固相法
1)以碳酸锂、氢氧化锂等为锂源,草酸亚铁、乙二酸亚铁,氧化铁和磷酸铁等为铁源,磷酸根主要来源于磷酸二氢铵等。
2)典型的工艺流程为:将原料球磨干燥后,在马弗炉或管式炉内于惰性或者还原气氛中,以一定的升温加速加热到某一温度,反应一段时间后冷却。
3)高温固相法的优点是工艺简单、易实现产业化,但产物粒径不易控制、分布不均匀,形貌也不规则,并且在合成过程中需要使用惰性气体保护。
2、碳热还原法
1)这种方法是高温固相法的改进,直接以铁的高价氧化物如Fe2O3、LiH2PO4和碳粉为原料,以化学计量比混合,在箱式烧结炉氩气气氛中于700℃烧结一段时间,之后自然冷却到室温。
2)采用该方法做成的实验电池首次充放电容量为151mAh/g。该方法目前有少数几家企业在应用,由于该法的生产过程较为简单可控,且采用一次烧结,所以它为LiFePO4走向工业化提供了另一条途径。
3)该法制备材料较传统的高温固相法容量表现和倍率性能方面偏低。
3、水热合成法
1)用Na2HPO4和FeCL3合成,然后与CH3COOLi通过水热法合成LiFePO4。
2)与高温固相法比较,水热法合成的温度较低约150度~200度,反应时间也仅为固相反应的1/5左右,并且可以直接得到磷酸铁锂,不需要惰性气体,产物晶粒较小、物相均一等优点,尤其适合于高倍率放电领域,但该种合成方法容易在形成橄榄石结构中发生Fe错位现象,影响电化学性能,且水热法需要耐高温高压设备,工业化生产的困难要大一些。
4、液相共沉淀法
该法原料分散均匀,前躯体可以在低温条件下合成;将LiOH加入到(NH4)2Fe(SO4)与H3PO4的混合溶液中,得到共沉淀物,过滤洗涤后,在惰性气氛下进行热处理,可以得到LiFePO4;产物表现出较好的循环稳定性,日本企业采用这一技术路线,但因专利问题目前尚未大规模应用。
5、雾化热解法
雾化热解法主要用来合成前躯体。将原料和分散剂在高速搅拌下形成浆状物,然后在雾化干燥设备内进行热解反应,得到前躯体,灼烧后得到产品。
6、氧化-还原法
该法能得到电化学优良的纳米级的磷酸铁锂粉体,但其工艺很复杂,不能大量生产,只适合实验室研究。
此外,还有乳化干燥法、微波烧结法及溶胶-凝胶法等。
目前国内外已经能实现磷酸铁锂电池量产的合成方法均是高温固相法,高温固相法又分传统的(以天津斯特兰、湖南瑞翔、北大先行等为代表,以草酸亚铁做为铁源)和改进的(以美国Valence、苏州恒正为代表,以三价铁物质做为铁源,该法也称碳热还原法)两种。对碳热还原法来讲,选取的铁源主要有两种,一种是Valence的氧化铁红路线,还有一种是清华大学(已成立北京锂先锋科技)以及武汉大学(已转让浙江振华新能源)的技术,选用磷酸铁做为铁源,该法制程工艺较为简单,其最大优点是避开了其它合成方法中使用磷酸二氢铵为原料,产生大量氨气污染环境的问题,但对磷酸铁原料要求较高。目前清华大学的一个研究小组通过控制沉淀条件合成了一种粒度可控,碳掺杂的磷酸铁前驱体,但该法合成难度较高,在工业放大过程中面临一些问题;目前有些厂家选用磷酸二氢锂做为生产磷酸铁锂的原材料,同样可以避免反应过程的污染问题,这个在氧化铁红路线上有所体现;这条路线和磷酸铁加碳酸锂的路线均不产生污染。
四、磷酸铁锂生产工艺研究方向与选择
LiFePO4生产工艺目前主要有高温固相反应法、碳热还原法、水热合成法、溶胶(凝胶)法、液相共沉淀法、微波合成法等。这些工艺都有各自的优缺点,但目前通过改良工艺后,应用比较广泛的还是前3种,美国的A123和加拿大的Phostech公司采用固相法,美国的Valence公司采用碳热还原法,LG化学利用连续水热合成法。
目前国内外已经能实现磷酸铁锂电池量产的合成方法主要是高温固相法,高温固相法又分传统的(以天津斯特兰、湖南瑞翔、北大先行等为代表,以草酸亚铁做为铁源)和改进的(以美国Valence、苏州恒正为代表,以三价铁物质做为铁源,该法也称碳热还原法)两种。
对碳热还原法来讲,选取的铁源主要有两种,一种是Valence的氧化铁红路线,还有一种是清华大学(已成立北京锂先锋科技)以及武汉大学(已转让浙江振华新能源)的技术,选用磷酸铁做为铁源,该法制程工艺较为简单,其最大优点是避开了其它合成方法中使用磷酸二氢铵为原料,产生大量氨气污染环境的问题,但对磷酸铁原料要求较高。
目前清华大学的一个研究小组通过控制沉淀条件合成了一种粒度可控,碳掺杂的磷酸铁前驱体,但该法合成难度较高,在工业放大过程中面临一些问题。
目前有些厂家选用磷酸二氢锂做为生产磷酸铁锂的原材料,同样可以避免反应过程的污染问题,这个在氧化铁红路线上有所体现;这条路线和磷酸铁加碳酸锂的路线均不产生污染。
在材料制备过程中,导电碳包覆是LiFePO4制备过程中的一项关键技术;A123通过在箔体表面预先涂敷一层高品质导电碳层,有效的降低了电池的内阻,提升了磷酸铁锂电池的大倍率放电能力。
LiFePO4正极材料具有循环性能好、比容量高、安全性能好以及原料来源广、价格低廉的特点,是下一代动力锂离子电池的首选材料。
随着锂离子电池越来越广泛的应用,LiFePO4正极材料日益受到人们的关注国内外关于其结构性能以及制备改性的研究已经取得了巨大的发展,但对其制备改性的研究仍将是以后研究的重点。
LiFePO4材料的合成难度很大,目前所应用的主要是固相法生产,生产周期长、能耗高,污染严重,产品批次稳定性差;而且专利技术掌握在外国手中;面临知识产权的问题。为了实现LiFePO4材料生产的高效、节能,且稳定大规模的生产;国内必须研发出一种全新的技术工艺路线来实现磷酸铁锂材料的产业化。
近几年来我国开展锂离子电池正极材料研究开发的单位主要有:天津电子18所、北京有色金属研究总院、四川省有色冶金研究院、中科院化学所及物理所、中国兵器工业第二一三研究所、中南大学、厦门大学、中科院盐湖所、北京科技大学、清华大学、武汉大学、浙江大学、江西理工大学、东北师范大学等等单位。
国内用溶胶-凝胶法制备出前躯体,然后采取微波烧结的工艺路线,是我国现有的动力电池技术的一次大突破,技术达到国内先进水平,国际上亦未见报道。具有自主的知识产权。可以有效地提高产品的各项性能指标,保证产品的质量稳定,环保节能,大幅度地降低了生产成本;与目前国内外采用的工艺(固相法)相比,可节能40%以上,生产周期缩短50%以上。成本降低70%以上。